Intel® Advisor

Vectorization Optimization and Thread Prototyping

Ad
Munara Tolubaeva
Software Technical Consulting Engineer

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS 1S”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice.
Notice revision #20110804

Data-Driven Threading Design
Intel® Advisor — Thread Prototyping

Have you:
. .) o Scalability of Maximum Site Gain Loop Iterations {Tasks) Modeling
= Tried threading an app, but seen little - . Avg. Number o Heraons _ v eraton (s
performance benefit? o o [7. w <viorn
. o) ‘:: 16x 5 . e : 0040 .04
= Hit a "scalability barrier”? Performance : o'] 7ol s -
gains level off as you add cores? A I o i T " .
> 1A 125¢ 125¢

» Delayed a release that adds threading
because of synchronization errors?

Target CPU Coun

Breakthrough for threading design:
» Quickly prototype multiple options

" Project scaling on larger systems Add Parallelism with Less Effort,

» Find synchronization errors before Less Risk and More Impact
implementing threading

= Separate design and implementation - http://intel.ly/advisor-xe
Design without disrupting development

Data Driven Vectorization Design

Intel® Advisor — Vectorization Advisor
Have you:

Threading and Vectorization Survey o Intel Advisor XE 2016
. . . . STMWERE 27 Survey Report | Suitability Report # Correctness Report % Memory Access Patterns
" Recomplled Wlth AVX2! bUt Seen Ilttle beneflt? Filter by Loop Type | Vectorized || Not Vectorized Filter by Source |All 1"~ Filter by Module [AI] - |
. . . ,) Egg;tsion Call Sites and Self Time Total Time h::;?)?s?; (L:;:r;p.li;(:eVectoriza:iogain Estimate Vectorized Loops
= Wondered where to start adding vectorization _
P loop at mmult_se... 10.040s 10.040s O Vectorized ... 2.19727 SSE2
P [loop at mmult_serial.cp... 0.000s 10.100s Scalar SSE2
- H H H f H l? P [loop at mmult_serial.cp... 0.000s 10.100s Scalar
Recoded intrinsics for each new architecture” b Hloc in bt mar-|— 00005 10.1005 el
| n)
= Struggled with cryptic compiler vectorization messages? Top Down :
Function Call Sites and Total Time | o salf i Hot Vector... ® Location
. . . Loops % otal Time. | Self TIME 1 55ps. Loops Source Loc... Module
Breakthrough for vectorization design Looamel a0esos
- __libc_start_main 1 100.0% 10.100s | 0s ibc-2.12.50
. . . <& [loop in __libc_st... 100.0% 10.100s 0s libc-2.12.s0
= \What vectorization will pay off the most? ~main 100.0% 10.100s 0Os mmult_seri .. 1_mmult_serial
<& [loop at mm... 100.0% 10.100s 0s Y mmult_seri... 1_mmult_serial
v & [loopatm... 100.0% 10.100s 0s [@ SSE2 mmult_seri... 1_mmult_serial
= What iS blocking vecto rization and Why’? < multiply_d 100.0% 10.100s 0.0600s mmult_seri... 1_mmult_serial
P & [loop ... 99.4% 10.040s 10.0400s e SSE2 mmult_seri... 1_mmult_serial

= Are my loops vector friendly?
= Will reorganizing data increase performance?

= s it safe to just use pragma simd?

More Performance

Fewer Machine Dependencies
intel) . 4

Factors that prevent Vectorizing your code

1. Loop-carried dependencies 3. Loop structure, boundary condition

DOI =1, N struct x { int d; int bound; };

A(I + M) = A(I) + B(I
() (1) (1) void doit(int *a, struct _x *x)

ENDDO {
for(int i = 0; i < x->bound; i++)
a[i] = O;

1.A Pointer aliasing (compiler-specific) }

void scale(int *a, int *b) 4 Quter vs. inner loops

{

for (int i = 0; i < 1000; i++)
b[i] =z * a[i]; for(i = 0; i <= MAX; i++) {
} for(j = 0; j <= MAX; j++) {

D[j]l[i] += 1;
}
}

2. Function calls (incl. indirect)

5. Cost-benefit (compiler specific..)

for (i = 1; i < nx; i++) {
x =x0 + i * h;
sumx = sumx + func(x, y, xp);

} And others......

Factors that slow-down your Vectorized code

1.A. Indirect memory access 2. Small trip counts not multiple of VL
for (i=0; i<N; i++) void doit(int *a, int *b, int
A[B[i]] = C[i]*D[i] unknown_small value)

{

for(int i = 0; i <
unknown_small value; i++)
1.B Memory sub-system Latency / Throughput SR R

void scale(int *a, int *Db)

{

for (int i = 0; i < VERY BIG; i++) 3. Branchy codes, outer vs. inner loops
c[i] = z * a[i][]j]~ _ . _
b[i] = z * a[i]; for(i = 0; i <= MAX; i++) {
} if (D[i] < N)
do this (D) ;
else if (D[i] > M)
do_that();
//..

5. MANY others: spillffill, fp accuracy trade-offs,
FMA, DIV/SQRT, Unrolling, even AVX throttling..

Intel® Advisor helps you increase performance!

Recommended methodology

\l 1. Characterize you code
» (e.g.scalarvs. vector, efficiency).
Focus on most impactful parts.

y \
IScalar Loops | | SIMD Loops |

2. Explore root cause preventing
(compilers) from Vectorization.
Implement low-hanging fix.

2. Root cause vectorized code slow-down
factors. Implement low-hanging fix.

Localize memory/memory-access-bound cases.

no \ %
— Done with all low-hanging impactful parts of your code?
yes l yes yes
| Scalar Loops | [Memory-bound loops | | SIMD Loops |
v
3. Check if Dependencies are real. 3. Explore Memory Access Pattern and | |

~ | Resolve dependencies. Memory Locality. Refactor for Memory Layout.

5 Steps to Efficient Vectorization - Vector Advisor
(part of Intel® Advisor, Parallel Studio, Cluster Studio 2016)

1. Compiler diagnostics + Performance Data + SIMD 2. Guidance: detect problem and recommend how to
efficiency information fix it

& VA |ssue: Peeled/Remainder loop(s) present

S Total Compiler Vectorization @ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Function Call Sites and Loopsa I [% e 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials
Loop Type Why No Vectorization? utilizing Full Vectors...
[#[loop in runCForalllambdal oops) 0.0945 00945 [Scalar vector dependence prevents vector . (3 Recommendation: Align memory access
[#{loop in runCForallLambdal oops] 01405 37445 [] Scalar inner loop was already vectorized Projected maximum performance gain: High

&V [loop in std:: Complex_base <double,struct_C_double_complex»zi... Projection confidence: Medium

- - : " T se one of the memory accesses in the source loop does not
Xecfogliw SSEIZ; 35E2 Loop process;ng Zlomz; Float54 data typ 3. Accu rate T"p Counts + FLOPs: understand ry access and tell the compiler your memory access is aligned.
eele oop; loop stuts were reordere .
R utilization, parallelism granularity & overheads e tounday
[[loop in stdzbasic_string<chan struct stdzchar_traits <chars,class stdvallo... 0,005
[loop in stdrbasic_string <char,struct steichar traits <char, class st 0,000 TotlTime | 120N S SIZE*sizeof(float), 32);
[#[loop in std:num_put<char,class stdzostreambuf_iterator<char,struct st 00005 Medien 4 ‘Mm Max ‘hemm Durtion ‘ca" Court
3151s@m 1 11 31509 1
044051 1 11 <00001s 2408000
0010sl 1 1 2 <0000s 275%
000sl i2 1 9 <0000s 1173619
0010sl £33 15 <0000ls 1312315
4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis
Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site 203 runCRawLoops runCRawLoops.coc1063 @ RAW:1 No information available No information available
) loop_site 139 runCRawLoops runCRawlLoops.coc622 No information available 1139%136% / 250 Mixed strides
ID @ Type Site Name Sources Modules State loop_site_160 runCRawLoops runCRawlLoops.coc925 No information available 100% /0% /0% All unit strides
P1 Q@ Parallel site information site2 dqtest2.cpp dqtest2 v Not a problem T
° A Memory Access Patterns
P2 Read after write dependency site2 dqtest2.cpp dqtest2 New D suidew Type T Modules _ Alignment
@ Read after write dependency site2 dqtest2.cpp dqtesa R New @r2 @ 001 Unit stride runCRawLoops.coc637 Icals.exe
m Wiite after write dependen dqtest2.cpp dqtest2 o POUHOE) &
636 plip] [0] += y[i2+32];
PS @ Wiite after wiite dependency site2 dqtest2.cpp dqtest2 F! New 637 plip] [1] += z[32+32];
638 i2 += e[i2+32];
P6 @ Wiite after read dependency site2 dqtest2.cpp dqtest2 R New 639 32 += £[32+32]);
P7 @ Wiite after read dependency site2 dqtest2.cpp; idle.h dqtest2 R New wp3 @ 00 Unit stride runCRawLoops.coc638 Icals.exe
=p30 @ -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe
626 il &= 64-1;
627 1 &= 64-1;
628 plip] (2] += b(j1] [il];

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

Self Total Compiler Vectorization

Time Time Loop Type Why No Vectorization?

[#[loop in runCForallLambdaloops) 0.0945 0.0945 [Scalar vector dependence prevents vector .,
[#[loop in runCForallLambdaloops) 0.1405 3.7445 [] Scalar inner loop was already vectorized

Function Call Sites and Loopsa

at_traits <chary,class stdiallo... 0.000s 5440, [Scalar nonstandard loop is not a vectorizi
[#[loop in stdibasic_string<char,struct std:ichar_traits<char>,class stdzallo.., 0,005 544.0.., a Scalar nonstandard loop is not a vectoriza
[#[loop in stdinum_put<char,class s trearbuf iterator<char,struct st.., 0,005 02345 [7] Scalar nonstandard loop is not a vectoriza ..

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which : What t
Trip Counts at prevents
loops are P vectorization?

vectorized!
A Where she 1dd vectorization andfor threading parallelism? & Intel Advisor XE 2016

& Annotation Report 1 Suitability aort

ctorized ‘ [Not Vectorized ‘ FILTER: | &ll Modules v | Sources o ‘
@ . . Tr‘ip o Wectorized Loops A
Vector Issues Self Timew | Total Time Counts Loop Type Why No Vectorization? > l — l
ecto.. | Efficiency Vector L.
0.170s1 0.170s 1 Scalar H non-vectarizable loop ins ...
pstl.cpp:2449in 5234] @ 2 Ineffective peeledfrem.. 0.170s| 017051 12;4 Collapse Collapse BV 4
A loopstl.cpp:24d9ins.. [0.150s1 0.150s1 12 Vectorized (Body) AWK 4
loopstl.cpp:2449ins.. [] 0.020s1 0.020s1 4 Remainder

opstl.cpp:7900inwvas_] [0.170s1 0.170s1 500 Scalar B vectorization possible but... 4
opstl.cpp:3509 in s2... ¥ 1High vector register ... 0.160s| 0.160s| 12 Expand Expand AYX 8
opstl.cpp:3891 in 5279] @ 2 Ineffective peeledfrem.. 0.150s1 0.150s1 125;4 Expand Expand ANX 8
opstl.cpp:6249 in s414_] 0.1505 | 015051 12 Expand Expand BNX 4

I_nurneric.h:247 instd... [] @ 1Assumed dependency... 0.150s] 0.150s1 49 Scalar B vector dependence preve ... v

hot loops vectorization instructions are How efficient is

the code?

issues do | being use?
have?

All the data in one place

Top : Compiler
Recommendations . :
Down Diagnostics
Top Down g g
Vectorized Loops Instre
Function Call Sites and Loops Total Time % | Total Time Self Time | Loop Type | Why No Vectorization? - - - -
Vecto...| Vector Length Compiler Estimated Gain | Traits
= Total 100.0% G 15.043s @ Os
EIfunc@0xbb2dacct 100.0% GED 15.043s @ Os
=l func@0xbb2dacf0 100.0% GED 15.043s @ Os
[=IBaseThreadInitThunk 100.0% G 15.043s @ Os
[=l_tmainCRTStartup 100.0% G 15.043s @ Os
=Imain 99.9% @B 15.035s @B Os
O [loop at Driver.c:145 99.9% B 15.035s @ Os Scalar loop with function call ...
printf 0.0%I 0.001s| 0.0006s
#func@0x10150ef0 0.1%l 0.008s | 0.0076s

Background on loop vectorization

A typical vectorized loop consists of -
This is where we want our loops

Main vector body to be executing!

» Fastest among the three!

Optional peel part

« Used for the unaligned references in your loop. Uses Scalar or slower vector

Remainder part

* Due to the number of iterations (trip count) not being divisible by vector length.
Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder

« Make sure you Align your data!

« Make the number of iterations divisible by the vector length!

Efficiently Vectorize your code

Intel Advisor — Vectorization Advisor

ere should | add vectorization and/fo eacing para D el Adviso 016
s Survey Report
Elapsed time: 54.44s ’ Vectorized ’ Not Vectorized ‘— FILTER: | All Modules v All Sources v a ‘
]]] i o Vectorized Loops A
Function Call Sites and Loops & | @ Vectorlssues Self Timew | Total Time Coﬂnts Loop Type Why Mo Vectorization? - -
ecto...‘ Efficiency ’Vector L
1> O [loop at stl_algo.h:4740 in stdutr... [0.170s1 0.170s1 B non-vectarizable loop ins ...
= [loop at loopstl.cpp:2449in 5234] ¥ 2 Ineffective peeledfrem.. 0.170s] 0170s1 12;4 Collapse AV 4
+:[U [loop at loopstl.cpp:2dd9ins.. [] 0.150s1 015051 12 AWK 4
1O [loop at loopstl.cpp:2dd9ins.. [] 0.0205 0.020s1 4
1> O [loop atloopstl.cpp:7900inwvas_] [] 0.170s1 0.170s1 500 Scalar B vectorization possible but... 4
[loop at loopstl.cpp:3509 in s2... @ 1High vector register ... 0.160s| 0.160s| 12 Expand Expand Avx [6B% 8
[loop at loopstl.cpp:3891 in s279_] @ 2 Ineffective peeledfrem.. 0.150s1 0.150s1 125;4 Expand Expand AN g
[loop at loopstl.cpp:6249in s414.] 0.150s 0.150s1 12 Expand Expand avx R0l |4
1> O [loop at st_numeric.h:247 in std.. [| @ 1Assumed dependency... 0.150s] 0.150s1 49 Scalar E vector dependence preve ... v
i< . - a >
Source Y =]
Line ’ Source Total Time ‘ % ’ Loop Time ’ % ‘ &
3504 forttime_ (&tl):
3505 i_ 1 = *ntimes;
3506 B for (nl = 1; nl <= i_ 1; +nl) 0.010s | 0.200s |
N [loop at loopstl.cpp:3506 in s273_]
Scalar Loop. Not wectorized: inner loop was already vectorized
No loop transformations were applied
3507 {
3508 i_ 2 = *n;
for (i_ = 1; i_ <= i_ 2; ++i_) 0.010s | 0.160s |
[loop at loopstl.cpp:3509 in s273_]
Vectorized AVX Loop processing Float32; Float64; Int3Z2 data type(s) having Inserts; Extracts; Masked 5t
Selected (Total Time): 0.010s v

2. Guidance: detect problem and
recommend how to fix it

& VA |ssue: Peeled/Remainder loop(s) present

@ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Y 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials,

Utilizing Full Vectors...
(>) Recommendation: Align memory access

Projected maximum performance gain: High

Projection confidence: Medium

The compiler created a peeled loop because one of the memory accesses in the source loop does not
start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.

This example aligns memory using a 32-byte boundary:

float *array;
array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);

// Somewhere else
__assume_aligned(array, 32);
// Use array in loop

14

Get Specific Advice For Improving Vectorization

Intel® Advisor — Vectorization Advisor

%' Where should | add vectorization and/or threading parallelism? Intel Advisor XE 2016
Summary gSurvey NS ® Refinement Reports £ Annotation Report | Suitability Report
’ Elapsed time: 8,81s ‘ Vectorized ‘ ’ Not Vectorized ‘ FILTER: | All Modules v | | All Sources v &
Vectorized Loops A
Function Call Sites and Loops $ | @ Vectorlssues Self Timev | Total Time Loop Type | Why No Vectorization? -
)) Vecto...‘ Estim... ’ Vector Len
. Click to see recommendation 11,4605 @ Scalar
i> O [loop at arena.cpp:82 in tbb:tbb:: L] 0,000s 11,460s @@ Scalar
= O [loop at fractal.cpp:179 in <lambda1>:0p... ® 5 Ineffective ..., 0,000s| 2,022s10 Collapse Collapse
1> [loop at fractal.cpp:179 in <lambdal>:0.. [| @ 2Datatypeco.. 0,000sl 2,022s0 Remainder
v
< >
¥ Recommendations | @
~
| & gfll Issue: Ineffective peeled/remainder loop(s) present
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from
peeled/remainder loops to the loop body.
5 led inder | he | bod
(>) Disable unrolling
The trip count after loop unrolling is too small compared to AdV|Sor ShOWS h|ntS to move nroll
factor using a directive.) .
ICL/ICC/ICPC Directive | IFORT Directive iterations to vector body.
#pragma nounroll IDIRS NOUNROLL
#pragma unroll IDIRS UNROLL
Read More:
e User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma
Reference > unroll/nounroll. v

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it

& P& |ssue: Peeled/Remainder loop(s) present

Seff Total Compiler Vec n All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Function Call Sites and Loopsa - - 9 @ 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vv
sl S Time Time 0 Typ Yithy No Vectorization? .

Loop Type Why No Vectorization? Utilizir I
Recommendation: Align memory access
Projected maximum performance gain: High
Projection confidence: Medium
The compiler created a peeled loop because one of the memory accesses in the source loop does not
start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.
This example aligns memory using a 32-byte boundary:

. 3. “Accurate” Trip Counts + FLOPs: understand
utilization, parallelism granularity & overheads

[loop in runCForallLambdal oops)

[loop in stdinum_put<char,class reambuf_iterator<char,struct st... 0,000

Trip Counts

Total Time - 5 -
Median 4 |Min ion Duration | Call Count

16

Critical Data Made Easy Knowing the time spent

Loop Trip Counts in a loop is not enough!

« M Where should | add vectorization and/or threading parallelism? Intel Advisor XE 2016

Summary %SurveyReport # Refinement Reports & Annotation Report | Suitabilit

’ Program time: 12.82s ‘ ’ Vectorized ‘ ’ Not Vectorized ‘ V: Al Sources v

Trip Counts Compiler Vectorization

Function Call Sites and Loops Self Timew | Total Time @ - - __
Median ‘ Min ‘ Max ‘ Call Count | Loop Type Why No Vectorizatiol

=2 [loop at Multiply.c:53 in matvec] 11,008 @D 117898 @ @1 Collapse Collapse
1> [loop at Multiply.c:53 in matvec] 11.851s@® 11.851- @D @1 101 101 101 12000000 Vectorized (Body) vector dependence p

3 3 3 1000000 Vectorized (Body)

1> [loop at Multiply.c:53 in matvec] 0.047s1 0.047s1
101 101 101

i>[loop at Multiply.c:53 in matvec] 0.413s| 0.413s1
KV [loop at Multiply.c:45 in matvec]
i>[loop at Driver.c:146 in main] 0.016s1 12,483 B

W] (W)

Check actual Loop ig iterating Since the loop is
trip counts 101 times but called so many
1.1 Find Trip Counts called > million times it would be

Find how many iteratia_"are executed. t|mes 3 b|g W|n |f we

[T1=]
cangetitto

Command Line 5
- vectorize.

4. Loop-Carried Dependency Analysis

@ Type Site Name Sources Modules State
Q@ Parallel site information site2 dqtest2.cpp dqtest2 v Not a problem
0 Read after write dependency site2 dqtest2.cpp dqtest2 Re New
Read after write dependency site2 dqtesQ cpp dqtest2 R New
EI dest2
PS @ Wiite after wiite dependency site2 dqtest2 cpp dqtest2
P6 @ Wiite after read dependency site2 dqtest2.cpp dqtest2
P7 @ Wiite after read dependency site2 dqtest2.cpp; idle.h dqtest2

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

« M Where should | add vectorization and/or threading parallelism? B Intel Advisor XE 201

Summary & NI Refinement Reports 4 Annotation Report i Suitability Report

“ Program time: 12.82s ‘ ’ Vectorized ’ ’ Not Vectorized ‘ FILTER: | All Modules v | All Sources V¥ Qo
Compiler Vectorization
Function Call Sites and Loops Self Timew | Total Time [@ | Trip Counts —
Loop Type Why No Vectorization?

1> [loop at Multiply.c:53 in matvec] 0.047s1 0.047s1 O 3 Vectorized (Body)
i>[loop at Multiply.c:53 in matvec] 0.413s1 0.413s1 | 101 Scalar
= [loop at Multiply.c:45 in matvec] 0.109s1 12.373s "l Collapse Collapse

i> [[loop at Multiply.c:45 in matvec] 0.078s| 11.930:@™@ [] 12 Vectorized (Body)

i>[loop at Multiply.c:45 in matvec] 0.031s1 0.4445| O 2 Remainder

[loop at Driver.c:146 in main] vector dependence prevents vectoriza...

Select loop for
2.1 Check Correctness CorreCFt) VeCtOI’ Dependence

Identify and explore loop-carried dependencies . prevents
for marked loops. Fix the reported problems. AnalyS|S and

o 1= oress play! Vectorization!

Command Line

Data Dependencies — Tough Problem #1

Is it safe to force the compiler to vectorize?

Data dependencies

for (i=0;i<N;i++) // Loop carried dependencies!

*C[i];// Need the ability to check if it

// it is safe to force the compiler

Issue: Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the assumption and handling accordingly.

(>) Enable vectorization
Potential performance gain: Information not available until Beta Update release
Confidence this recommendation applies to your code: Information not available until Beta Update release
The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe
to vectorize using the restrict keyword or a directive.

ICL/ICC/ICPC Directive IFORT Directive Outcome
#pragma simd or #pragma omp simd | !DIRS SIMD or !SOMP SIMD | Ignores all dependencies in the loop
#pragma ivdep IDIRS IVDEP Ignores only vector dependencies (which is safest)
Read More:

e User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific
Pragma Reference >
o ivdep
o omp simd

Correctness — Is It Safe to Vectorize?

Loop-carried dependencies analysis Received recommendations to force
vectorization of a loop:

#| Check for loop-carried dependencies in

ey Sy o, [N 115 1. Mark-up the loop and check for the
Site Name Site Function Site Info Loop-Carried Dependencies presence Of REAL dependenC|eS

loop_site_6 main main.cpp:13 @ RAWAT AWART A wWaw:1

Detected 2. Explore dependencies in more
dependencies details with code snippets

AR In thi le3d denci
P1 Parallel site information Igfp_site 6 main.cpp test_l.exe « Nota problem n I S eXa m p e e pe n e n CI eS We re
P3 @ Read after write dependengloop_site_6 n.cpp test_lexe R New
P4 @ Write after write dependéfity loop_site_6 crtexe.c; main.cpp test_lexe R New d ete Cted
3 en loop_site_6 | crtexe.c; main.c| est_1.exe L Mes

« RAW - Read After Write

« WAR - Write After Read

ID Description Source Function Module State
=317 Read main.cpp:22 main test_lexe R New
2o k += a[9]: . .
S —a « WAW — Write After Writ
2 k - a0 rie er vvrite
23 k += a[6]:
24 k *= a[5]:

=318 Read main.cpp:23 main :
S Source lines with Read and Write ThIS iS NOT a gOOd
” ey accesses detected

candidate to force

vectorization!

5. Memory Access Patterns Analysis

Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site_203 runCRawLoops runCRawLoops.coc1063 €@ RAW:L No information available No information available
loop_site 139 runCRawlLoops runCRawlLoops.coc622 No information available 11399 36% / 250 Mixed strides
loop_site_ 160 runCRawlLoops runCRawLoops.c0c925 No information available 100% /0% /0% All unit strides

Memory Access Patterns
Stride v Type Source Modules Alignment
Unit stride runCRawLoops.coc637 Icals.exe

plip] [0]
plip][1] +=z

Unit stride runCRawLoops.coc638 Icals.exe
=p30 @ -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe

64-1;
plip][2] += b[31][i1];

22

Non-Contiguous Memory — Tough Problem #2

Potential to vectorize but may be inefficient

= Non-unit strided access to arrays
for (i=0;i<N;i+=2) //Incrementing “i” by 2 is not unit stride
//We need a way to check how we are
//accessing memory.
= |ndirect reference in a loop

for (i=0;i<N;i++)

A[B[i]] = C[i]*D[i];//We have to decode B[i] to find out
//which element of A to reference

Improve Vectorization

Memory Access pattern analysis

A Where should | add vectorization and/or threading parallelism? IO

Summary % SIGCCL L # Refinement Reports 4 Annotation Report | Suitability Report
[Elapsed time: 8,52s] | Vectorized ‘ ’ Not Vectorized ‘ FILTER: | All Modules v | | All Sources v
5 : Why No
Function Call Sites and Loops é : Loop Type e
3 Select loops of interest PP Vectorization?
=% [loop at fractal.cpp:179 in <lambda1>:op... ' rector ... 0,013s| 12,020s @@ Collapse Collapse
@ [loop at fractal.cpp:179 in <lambdal>:o0... ® Serialized use.. 11,281s] | Vectorized (Body)
1> O [loop at fractal.cpp:179 in <lambdal>:0... ‘¥ 2 Data type co ... 0,000s | 0,163s| Peeled
i> O [loop at fractal.cpp:179 in <lambdal>:o0... ‘¥ 2 Data type co... 0,000s | 0,576s) Remainder
i O [loop at fractal.cpp:177 in <lambdal>:oper.. [] @ 2Datatypeco.. 0,010sl 12,0305 @B Scalar
<

2.2 Check Memory Access Patterns

Identify and explore complex memory
accesses for marked loops. Fix the
reported problems.

[1[=]

Command Line

Run Memory Access Patterns analysis,
just to check how memory is used in the
loop and the called function

Find vector optimization opportunities

Memory Access pattern analysis

Stride distribution

A Check memory access patterns in your application O

Summary -, Survey Report 3 Refinement Reports [EEGT T E1dTel Wil Tel) { Suitability Report

Site Name | Site Function | Site Info ‘ Loop-Carried Dependencies | Strides Distribution Access Pattern

loop_site_79
loop_site_93

operator()

fractal.cpp:179 No information available
fractal.cpp:179

loop_site_94 operator() pp: No in ation 3vailable All unit stride
All memory accesses are uniform, with zero unit stride, so
the same data is read in each iteration
Memory Access Patterns Report . - .
= ‘r’ - - We can therefore declare this function using the omp
tride hy
qmp1e @ o .
2Pt @ 0 Unit stride
N 64 color_t color;
65 -
66 £x0 = x0 - size x / 2.0%;
67 fy0 = y0 - size_y / 2.0f;
68 £fx0 = £x0 / magn + cx;
=ZpP24 @ o0 Unit stride fractal.cpp:68 fractal.exe
N 66 £X0 = %0 - size x / 2.0%;
67 fy0 = y0 - size_y / 2.0f;
&8 fx0 = £x0 / magn + cx;
69 fy0 = £fy0 / magn + cy;
P?_7’- 0 Unit stride fractal.cpp:69 fractal.exe
P30 @ o Unit stride fractal.cpp:74 fractal.exe

Advisor 2017 Update 2 Features

FLOPS And AVX-512 Mask Usage Vectorized Loops Instruction Set Analysis
u GFLOPS Al Mask Utilization Vector...| Efficiency | Gain Estim...| VL (... | Traits
1 . CaChe aware ROOfI ine 100,0% === | AVXS12 | PRI FMA; Mask Manipulations
0,856 00809 | 91,77 CEEEEEER AVX512 _:| 17.69x 16: 8 | FMA; Mask Manipulations
0,455 =2 01398 896%™ AvX512 [ZI00E T | 14.41x 16,8 FMA; Mask Manipulations
2 | d T C t d F L O P S 0,234ED 01472 100,0% Cmm) Appr. Reciprocals(AVX-512ER): Expone....
. Improve rip vounts an e 01629 =
0,0350 0,0722 40,1% 3 FMA; Square Roots; Type Conversions
. . 00910 0,0208 FMA
1. Call Count metric for functions 00740 01420 FA

roofline_demo_samples - Project Properties X

3. Filtering by module

Analysis Target Binary/Symbol Search Source Search

.:J a Survey Analysis Types Su it V‘
. Survey Hotspots Ana i __
T Survey Trip Count An Specify and configure the application executable (target) to analyze. Press F1

4. Re-finalization

i - ; for more details.
: : - -9 suitability Analysis
5 - Dyn a m I C I n Stru Ctl 0 n =& Refinement Analysis Ty e O Include only the following module(s) A
@ Dependencies Analy: @ Exclude the following module(s)
. - & Memory Access Patte :
Mixes | Modity..

Specify application (or child application)
module(s) to include in or exclude from
inspection.

1. -report survey -mix

Vectorized loops with high efficiency

A Where should | add vectorization and/or threading parallelism? D Intel Advisor XE 2016

[@ Elapsedtime: 12.61s W Vectorized @& Not Vectorized FINILE All Modules v B All Sources v

Summary %Survey (ST @ll ® Refinement Reports & Annotation Report

‘ Vectorized Loops
Self Time

Loops Vector Issues Total Time

Why No Vectorization? —
. | Efficiency +

B1O [loop in fGetEquilibriumF at IbpSUB.c ... | [| | Data type conversions present 0.355s0 0.355s| Vectorized (Bo...

#® [loop in fCollisionBGK at IbpBGK.cpp:... [| ¥ 1Ineffective peeled/remainder ... 0.047s| 0.047s| Vectorized (Re... AVX [67%,. |13
[+ [loop in fGetFracSite at IbpGET.cpp:19... [] @ 1Possible inefficient memory a.. 0.020s1 0.020s | Vectorized Vers... AVX 1.5¢

Are we done??..

Vectorized loops with high efficiency

PR
AL LN T
“E

PR

...t depends.
If code is not SIMD bound,
then Speedup <= Vectorization Gain

In addition(instead of) VPU-bound
code could be Memory Bound

Am | bound by VPU/CPU or by Memory?
Quick and Dirty check with Survey Loop Analytics.

| » Memory 62% (64) DD Y Memory 62% (64)
» Compute 17% (17) BB » Vector 19% (20) BB
o Other 21% (22) OB | > Scalar 43% (44) (D J
Insruction Mix Summary ¥ Compute 17% (17)
_ _ _ _ » Vector 15% (15) @B
The types of instructions in your loop will be a » Scalar 2% (2) |
rough indicator of whether your are doing more o Other 21% (22) @

. Insruction Mix Summary
memory or computational work
¥ Memory: 62.14% " Compute: 16.5° Other: 21.36%
Y Scalar: 42.72% ¥ Vector: 14.56%
- AVX: 14.56%

Am | bound by VPU/CPU or by Memory?
ROOFLINE ANALYSIS

Peak FP

Flop /byte

Roofline Automation in Intel®
(Vectorization) Advisor 2017

Performance (GFlops/sec) k |§| « X é
Roof Name Visible Selected

Each Roof (slope) ® L. | C T:M:m::dm
Gives peak CPU/Memory throughput 'o.% e -8 I S T T O
of your PLATFORM (benchmarked) ° B8 L3 Beruuat =
i Scalar Add Peak O

SP Vector Add Peak

DP Vector Add Peak O O

SP Vector FMA Peak

DP Vector FMA Peak O O

Loop Weight Representation Cancel Default

Size Color Visible

+ ® 4 green
Threshold Value |0.2 %
+ O s yellow
6.3921e-3 -
- | Threshold Value |2 %
+ . 8 red

0.0015
Self Time: 10.918 s Total Time: 10.918s

* Interactive mapping to source and performance profile

Source TopDown Loop Analytics Loop Assembly & Recommendations & Compiler D

» Synergy between Vector Advisor and Roofline: FMA example

Line l Source

4399 for (i_ =1; i <=1i_ 2; ++i_) .

4400 aa[i_ + i * aa diml] += bb[i__ + i__ * bb diml] * cc[i__ + \0 Customizable chart

4401 * cc_diml]; T

Advisor Roofline: under the hood

Roofline application profile:
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Axis X: Al = #FLOP / #Bytes
Seconds
Roofs |

User-mode sampling Microb h k
icrobenchmarks

Pefomance (GFLOPS) / Actual peak for the
1000 SP Vactgr FMA Pask: 449,62 GFLOPS current configuration

r,/a __— DP VeZtor FMA Pezk: 221 23 GFLOPS
"~ " SP Vector Add Pes¥ 110.6 GFLOPS

0
— DP Vi eak: 56.21 GFLOPS
Performance = Flops/seconds -/’E\"‘ﬁm
R Scalar Add Pezk: 14.05 GFLOPS
. A |
L) !
s

Root access not
needed

= Binary Instrumentation

Anthmetic Intens Counts operands size (not cachelines)

Binary Instrumentation
Does not rely on CPU
counters

0.01 01 1

Ky

Getting Roofline in Advisor

FLOP/S
= #FLOP/Seconds

Seconds

#FLOP Count

- Mask Utilization

-#Bytes

Step 1: Survey

- Non intrusive. Representative
- Output: Seconds (+much more)

v

Step 2: FLOPS

- Precise, instrumentation based
- Physically count Num-Instructions
- Output: #FLOP, #Bytes

Intel Confidential

Survey+FLOPs Report on AVX-512:
FLOP/s, Bytes and Al, Masks and Efficiency

Elapsed time: 2205 | 3 | [TEIREEg] | © Not Vectorized| |5 | FILTER:| AllModules ~ || AliSources +|[Loops || AllThreads | offll : Q

P Summary A Survey & Roofline | {3 Refinement Reports ADVISOR 20
2 i Vectorized L FLOPS And AVX-512 Mask U
5 = Function Call Sites and & |Total Timew T ectorized Loops @ Vector n ask Usage
S Loops Vector ... Efficiency | Gain...| VL. lsues | GrLops Al Mask Utilization
= " [loop in fCalcInteraction_Sh... | [] 0,050s[l208% Vectorized (Rem... AVX512 [[44% 353x 8 0,847 0,097 50,0%
" [loop in fGetEquilibriumF atI... | [] 0,050s MB0MSA) Vectorized (Body; ... AVX512 16,8 © 2 Ineffec... 3,666) 0,345 79,2% ==
i [[loop in fCalcInteraction_Sha... O 0,030s D Vectorized (Remai... AVX512 8 1,482 ™ 0,097 50,0% =2
© " [loop in fGetOneMassSite at I... | [0,020s @B Vectorized (Remai... AVX512 8 @ 1Ineffec... 0,763 3 0,125 79,2% D
" [loop in fSiteFluidCollisionBG ... [] oo0t0s®@ Vectorized (Remai... AVX512 8 @ 1lneffec... 0,724 3D 0,113 37,5% 3
" [loop in fGetOneMassSite at | ... [J o0t0s@ Vectorized (Remai... AVX512 8 @ 1Ineffec... 1,529 0 0,125 79,2% 3
acl S >
‘ Source | Top Down | Code Analytics ’ Assembly ¢ Recommendations & Why No Vectorization?
m D Loop in fCalcinteraction_ShanChen_Boundary at Average Trip Counts: 1 (~) GFLOPS:0.8474 ®
1bpFORCE.cpp:188 .
AVX-512 Mask Usage: 50
(5 Traits ®))
0,050s Instruction Mix
Vect: d (R d Total t
ectonzed (Remainder) - Total time FMA Memory: T Compute: 6 Other:4 Number of Vector
X Registers: 7
AVX2; AVX512F_512 0,050s I
Instruction Set Self time
b Collect | > Memory 41% (7) D Code Optimizations ®
» Compute 35% (6) D L) -
. o Other 24% (4) @D Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications

running on Intel(R) 64,
Version: 16.0.2.181 Build 20160204

Compiler estimated gain: 4,85x

Instruction Mix Summary

P Collect | M1 o
. L 1 a5
Code Optimizations Applied By Compiler During

44% Vectorization Efficiency Vectorization Gain Vectorization:

o Masked Loop Vectorization
e Unaligned Access in Vector Loop

General efficiency (FLOPS) vs.
VPU-centric efficiency (Vector Efficiency)

- ; Mtorized Loops @PS And AVX-512 Mask Usage
g {unctlon Call Sites and & Total Timew e | P . :/ector g -
DU Vector ... Efficiency Gain..|VL .| | 'SSU& | GFLOPS Al Mask Utilization
ﬂ’[loopinfCalclnteraction_Sh...é 0,050s| 20,8% ectorized (Re : : 0,847 T 0,09 0,0%
" [loop in fGetEquilibriumF at ... | [0,050s [EOMME VectosizedTBody; .. AVX512 16,8 § 2 Ineffec... 3,666) 0, 79,2%
. L. [ectorized (Remai.} AVX512 8 14820 0,097 50,0% =2
H g h Vector Efficien CV' Jectorized (Remai.}, AVX512 8 9 1neffec... 0,763 D 0,125 79,2%
[ectorized (Remai.} AVX512 8 1Ineffec.|. 0,724 23 0,113 37.5% 3
LOW F LO PS [ectorized (Remai..\AVX512 8 1 Ineffec...\|,529 0 0,125 79,2% 0
W —~ i ™~
Function Call Sites and /| Vectorized Loops ' Vector/ FLOPS And AVX-512 Mask Usage
=]] & | Total Timev Type — : | —
oops Vector |...| Efficiency Gain...|VL .| ['Y€ | | GFLOPS Al Mask Utilization
 [loop in fCalcInteraction_Sha... | [] 0,0505- Vectorized (Remai | AVX512 | 44% 35% 8 0,847 @ 0,097 50,0% 0
" [loop in fGetEquilibriumF at ... | [0,050s [NBDMEE Vectorized (Body: .. AVX512 5,79 16:8 § 2 Ineffec... 3,666) (,345 79,2%)
L ectorized (Remai.|. AVX512 33 8 57 — 0,097 30,0% =2
Low Vector EffICIenCy ectorized (Remai [, AVX512 |18 8§ 1inefféc... 0,768 015 792%Emm
Remai.|. AVX512 | « 0,743 3 375% 3

High FLOPS

1,529 10125 |792%
~

Interpreting Roofline Data: advanced ROI
analysis.

Final Limits Current Limits
(assuming perfect optimization) (what are my current bottlenecks)
Long-term ROI, optimization strategy che(GWNeXt steq, :orx)’fimization tactics
A 441801 . - SP.Vestor FMA Peak: 4.4180e+1 GFlopsises __. o 4 R

Compute bound

S
(9
<
CS"

& Finally compute-bound Cof
¢ A A\ |nvest more into effective =

»ating point performance, GFLOP/s
(o)
2
)
=
¢
~

6‘0* CPU/VPU (SIMD) S < ’ Check your
; & T Advisor Surve
= y
F. A b d Opt|m|zat|0n 3.0205¢-2 and MAP results
ma y memory-boun
1 Seff Time: 0.346s qI.'%azlzl'lme: 0.346s Arithmetic Imegéztye:t%lopswe)
Invest more into > .
. Source TopDown Loop Analytics L A bly Rec dati & Compiler Di ic Details
effective cache ensity, FLOP/byte ’ ’ -
e . Line Source TotaITimel % [LoopTime[% l Traits "‘
Utl|lzatI0n 200 for (i__ =2; i <=1i_2; ++i_) 0,054s 0,346s

0,151s |

Command line usage

* advixe-cl -collect survey -project-dir ./your project -—-no-auto-finalize -
search-dir src=./srcPath -search-dir bin=./binPath -- ./yourExecutable

* advixe-cl -collect map -mark-up-list=10,12,15 -project-dir ./your project -

search-dir bin=./binPath -search-dir src=./srcPath -- ./yourExecutable

* advixe-cl -collect dependencies --project-dir ./your project --loops="loop-
height=0, total-time>2" -- ./yourExecutable

* advixe-cl -report survey -project-dir ./yourProject --search-dir src:r=./src

* advixe-cl -collect survey -module-filter-mode=include -module-
filter=AnalyzeMyApp.exe,AnalyzeThisToo.dll -project-dir MyProject --
AnalyzeMyApp.exe

* advixe-cl -collect survey -module-filter-mode=exclude -module-
filter=DoNotAnalyze.so -project-dir MyProject -- MyApplication

Intel Confidential intel) l 37

Roofline access and how-to

 For 2017 Update 1

(1) Requires env variable set before running command line or GUI:

export ADVIXE EXPERIMENTAL=roofline

« Starting from 2017 Update 2

Just available by default

Intel Confidential intel“ . 38

Roofline access and how-to

command line example

(optional) > source advixe-vars.sh

(optional) > export ADVIXE EXPERIMENTAL=roofline

1st pass
Obtain “Seconds”
1.1x overhead

> advixe-cl --collect survey -no-auto-finalize --project-dir ./your project
-—- <your-executable-with-parameters>

2"d pass
Obtain #FLOP count:
3x-5x overhead

> advixe-cl --collect tripcounts -flops-and-masks --project-dir ./
your project -- <your-executable-with-parameters>

> advixe-gui ./your project -

